Abstract
It is well known that subsets of the two-dimensional space ℤ2 can represent prominent musical and music-theoretical objects such as scales, chords and chord vocabularies. It has been noted that the major and minor diatonic scale form convex subsets in this space. This triggers the question whether convexity is a more widespread concept in music. This article systematically investigates the convexity for a number of musical phenomena including scales, chords and (harmonic) reduction. It is hypothesised that the notion of convexity may be a covering concept of musical phenomena and possibly reflects other mathematical properties of these musical structures. Furthermore, convexity can be used in a pitch-spelling model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.