Abstract

In many applications it is important to establish if a given topological preordered space has a topology and a preorder which can be recovered from the set of continuous isotone functions. Under antisymmetry this property, also known as quasi-uniformizability, allows one to compactify the topological space and to extend its order dynamics. In this work we study locally compact σ-compact spaces endowed with a closed preorder. They are known to be normally preordered, and it is proved here that if they are locally convex, then they are convex, in the sense that the upper and lower topologies generate the topology. As a consequence, under local convexity they are quasi-uniformizable. The problem of establishing local convexity under antisymmetry is studied. It is proved that local convexity holds provided the convex hull of any compact set is compact. Furthermore, it is proved that local convexity holds whenever the preorder is compactly generated, a case which includes most examples of interest, including preorders determined by cone structures over differentiable manifolds. The work ends with some results on the problem of quasi-pseudo-metrizability. As an application, it is shown that every stably causal spacetime is quasi-uniformizable and every globally hyperbolic spacetime is strictly quasi-pseudo-metrizable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.