Abstract

We develop convexification techniques for linear programs with linear complementarity constraints (LPCC). In particular, we generalize the reformulation-linearization technique of [9] to complementarity problems and discuss how it reduces to the standard technique for binary mixed-integer programs. Then, we consider a class of complementarity problems that appear in KKT systems and show that its convex hull is that of a binary mixed-integer program. For this class of problems, we study further the case where a single complementarity constraint is imposed and show that all nontrivial facet-defining inequalities can be obtained through a simple cancel-and-relax procedure. We use this result to identify special cases where McCormick inequalities suffice to describe the convex hull and other cases where these inequalities are not sufficient

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.