Abstract

Speaking rate estimation directly from the speech waveform is a long-standing problem in speech signal processing. In this paper, we pose the speaking rate estimation problem as that of estimating a temporal density function whose integral over a given interval yields the speaking rate within that interval. In contrast to many existing methods, we avoid the more difficult task of detecting individual phonemes within the speech signal and we avoid heuristics such as thresholding the temporal envelope to estimate the number of vowels. Rather, the proposed method aims to learn an optimal weighting function that can be directly applied to time-frequency features in a speech signal to yield a temporal density function. We propose two convex cost functions for learning the weighting functions and an adaptation strategy to customize the approach to a particular speaker using minimal training. The algorithms are evaluated on the TIMIT corpus, on a dysarthric speech corpus, and on the ICSI Switchboard spontaneous speech corpus. Results show that the proposed methods outperform three competing methods on both healthy and dysarthric speech. In addition, for spontaneous speech rate estimation, the result show a high correlation between the estimated speaking rate and ground truth values.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.