Abstract

In image recovery, convex projection methods have been in use for almost two decades. However, while it is well known that projections can seldom be computed exactly, the effect of inexact projections on the behavior of such methods has not yet been investigated. We propose such an analysis and establish conditions on the projection errors under which the theoretical convergence properties of various algorithms remain valid. Our analysis covers sequential, parallel, and block-iterative (subgradient) projection methods for consistent and inconsistent set theoretic image recovery problems. It is shown in particular that parallel projection methods are more robust to errors than sequential methods such as the popular POCS (projection on to convex sets) algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.