Abstract

In this paper we develop and analyse convex searches for Zames--Falb multipliers. We present two different approaches: Infinite Impulse Response (IIR) and Finite Impulse Response (FIR) multipliers. The set of FIR multipliers is complete in that any IIR multipliers can be phase-substituted by an arbitrarily large order FIR multiplier. We show that searches in discrete-time for FIR multipliers are effective even for large orders. As expected, the numerical results provide the best $\ell_{2}$-stability results in the literature for slope-restricted nonlinearities. Finally, we demonstrate that the discrete-time search can provide an effective method to find suitable continuous-time multipliers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.