Abstract

SUMMARY We study various properties of a dynamic convex risk measure for bounded random variables which describe the discounted terminal values of financial positions. In particular we characterize time-consistency by a joint supermartingale property of the risk measure and its penalty function. Moreover we discuss the limit behavior of the risk measure in terms of asymptotic safety and of asymptotic precision, a property which may be viewed as a non-linear analogue of martingale convergence. These results are illustrated by the entropic dynamic risk measure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.