Abstract

Continuous-variable systems realized in quantum optics play a major role in quantum information processing, and it is also one of the promising candidates for a scalable quantum computer. We introduce a resource theory for continuous-variable systems relevant to universal quantum computation. In our theory, easily implementable operations---Gaussian operations combined with feed-forward---are chosen to be the free operations, making the convex hull of the Gaussian states the natural free states. Since our free operations and free states cannot perform universal quantum computation, genuine non-Gaussian states---states not in the convex hull of Gaussian states---are the necessary resource states for universal quantum computation together with free operations. We introduce a monotone to quantify the genuine non-Gaussianity of resource states, in analogy to the stabilizer theory. A direct application of our resource theory is to bound the conversion rate between genuine non-Gaussian states. Finally, we give a protocol that probabilistically distills genuine non-Gaussianity---increases the genuine non-Gaussianity of resource states---only using free operations and postselection on Gaussian measurements, where our theory gives an upper bound for the distillation rate. In particular, the same protocol allows the distillation of cubic phase states, which enable universal quantum computation when combined with free operations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.