Abstract

System operators have to ensure an N-1 secure operation, while dealing with higher degrees of uncertainty. This paper proposes a semidefinite relaxation of the chance and security constrained optimal power flow (SCOPF). Our main contributions are the introduction of systematic methods to obtain zero relaxation gap, providing a tractable chance constrained SCOPF formulation, and addressing scalability. We introduce a systematic procedure to obtain zero relaxation gap using a penalty term on power losses. To achieve tractability of the joint chance constraint, a piecewise affine approximation, and a combination of randomized and robust optimization is used. To address scalability, we propose an iterative solution algorithm to identify binding constraints, and we apply a chordal decomposition of the semidefinite constraints. We demonstrate the performance of our approach on IEEE 24 and IEEE 118 bus system using realistic day-ahead forecast data and obtain tight near-global optimality guarantees.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.