Abstract

Traditionally, linear programming (LP) has been used to construct convex relaxations in the context of branch and bound for determining global optimal solutions to nonconvex optimization problems. As second-order cone programming (SOCP) and semidefinite programming (SDP) become better understood by optimization researchers, they become alternative choices for obtaining convex relaxations and producing bounds on the optimal values. In this thesis, we study the use of these convex optimization tools in constructing strong relaxations for several nonconvex problems, including 0-1 integer programming, nonconvex box-constrained quadratic programming (BoxQP), and general quadratic programming (QP). We first study a SOCP relaxation for 0-1 integer programs and a sequential relaxation technique based on this SOCP relaxation. We present desirable properties of this SOCP relaxation, for example, this relaxation cuts off all fractional extreme points of the regular LP relaxation. We further prove that the sequential relaxation technique generates the convex hull of 0-1 solutions asymptotically. We next explore nonconvex quadratic programming. We propose a SDP relaxation for BoxQP based on relaxing the firstand second-order KKT conditions, where the difficulty and contribution lie in relaxing the second-order KKT condition. We show that, although the relaxation we obtain this way is equivalent to an existing SDP relaxation at the root node, it is significantly stronger on the children nodes in a branch-and-bound setting.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call