Abstract

This paper studies mixed-integer nonlinear programs featuring disjunctive constraints and trigonometric functions and presents a strengthened version of the convex quadratic relaxation of the optimal transmission switching problem. We first characterize the convex hull of univariate quadratic on/off constraints in the space of original variables using perspective functions. We then introduce new tight quadratic relaxations for trigonometric functions featuring variables with asymmetrical bounds. These results are used to further tighten recent convex relaxations introduced for the optimal transmission switching problem in power systems. Using the proposed improvements, along with bound propagation, on 23 medium-sized test cases in the PGLib benchmark library with a relaxation gap of more than 1%, we reduce the gap to less than 1% on five instances. The tightened model has promising computational results when compared with state-of-the-art formulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.