Abstract
A reliable and accurate positioning technology is crucial for a large variety of wireless services and applications. High-resolution estimates of distance and direction data are available in most current and emerging wireless systems. Combining these two sensing modalities can improve the estimation performance and identifiability of the localization problem. However, the problem of cooperative localization using joint distance and direction estimates is still a largely unexplored problem. A novel convex relaxation of the maximum likelihood (ML) estimator for this problem called Semidefinite Programming Hybrid Localization (SDHL) algorithm is proposed in this paper. Numerical results are presented showing that the localization error is significantly reduced in almost every simulation scenario compared to the state of the art. This improvement in localization performance is due to the close approximation of the ML estimator.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.