Abstract

It is well known that the recursive least squares (RLS) algorithm is renowned for its rapid convergence and excellent tracking capability. However, its performance is significantly compromised when the system is sparse or when the input signals are contaminated by impulse noise. Therefore, in this paper, the minimum error entropy (MEE) criterion is introduced into the cost function of the RLS algorithm in this paper, with the aim of counteracting the interference from impulse noise. To address the sparse characteristics of the system, we employ a universally applicable convex function to regularize the cost function. The resulting new algorithm is named the convex regularization recursive minimum error entropy (CR-RMEE) algorithm. Simulation results indicate that the performance of the CR-RMEE algorithm surpasses that of other similar algorithms, and the new algorithm excels not only in scenarios with sparse systems but also demonstrates strong robustness against pulse noise.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.