Abstract

In this brief, a robust and sparse recursive adaptive filtering algorithm, called convex regularized recursive maximum correntropy (CR-RMC), is derived by adding a general convex regularization penalty term to the maximum correntropy criterion (MCC). An approximate expression for automatically selecting the regularization parameter is also introduced. Simulation results show that the CR-RMC can significantly outperform the original recursive maximum correntropy (RMC) algorithm especially when the underlying system is very sparse. Compared with the convex regularized recursive least squares (CR-RLS) algorithm, the new algorithm also shows strong robustness against impulsive noise. The CR-RMC also performs much better than other LMS-type sparse adaptive filtering algorithms based on MCC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.