Abstract

An interesting set of geometric figures is composed of the convex polyhedra in Euclidean 3-space whose faces are regular polygons (not necessarily all of the same kind). A polyhedron with regular faces is uniform if it has symmetry operations taking a given vertex into each of the other vertices in turn (5, p. 402). If in addition all the faces are alike, the polyhedron is regular.That there are just five convex regular polyhedra—the so-called Platonic solids—was proved by Euclid in the thirteenth book of the Elements (10, pp. 467-509). Archimedes is supposed to have described thirteen other uniform, “semi-regular” polyhedra, but his work on the subject has been lost.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.