Abstract

Many geodetic applications require the minimization of a convex objective function subject to some linear equality and/or inequality constraints. If a system is singular (e.g., a geodetic network without a defined datum) this results in a manifold of solutions. Most state-of-the-art algorithms for inequality constrained optimization (e.g., the Active-Set-Method or primal-dual Interior-Point-Methods) are either not able to deal with a rank-deficient objective function or yield only one of an infinite number of particular solutions. In this contribution, we develop a framework for the rigorous computation of a general solution of a rank-deficient problem with inequality constraints. We aim for the computation of a unique particular solution which fulfills predefined optimality criteria as well as for an adequate representation of the homogeneous solution including the constraints. Our theoretical findings are applied in a case study to determine optimal repetition numbers for a geodetic network to demonstrate the potential of the proposed framework.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.