Abstract

In this paper, a cooperative localization algorithm for autonomous underwater vehicles (AUVs) is proposed. A “parallel” model is adopted to describe the cooperative localization problem instead of the traditional “leader-follower” model, and a linear programming associated with convex optimization method is used to deal with the problem. After an unknown-but-bounded model for sensor noise is assumed, bearing and range measurements can be modeled as linear constraints on the configuration space of the AUVs. Merging these constraints induces a convex polyhedron representing the set of all configurations consistent with the sensor measurements. Estimates for the uncertainty in the position of a single AUV or the relative positions of two or more nodes can then be obtained by projecting this polyhedron onto appropriate subspaces of the configuration space. Two different optimization algorithms are given to recover the uncertainty region according to the number of the AUVs. Simulation results are presented for a typical localization example of the AUV formation. The results show that our positioning method offers a good localization accuracy, although a small number of low-cost sensors are needed for each vehicle, and this validates that it is an economical and practical positioning approach compared with the traditional approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.