Abstract
We present a simple algorithm for determining the extremal points in Euclidean space whose convex hull is the nth polytope in the sequence known as the multiplihedra. This answers the open question of whether the multiplihedra could be realized as convex polytopes. We use this realization to unite the approach to A n -maps of Iwase and Mimura to that of Boardman and Vogt. We include a review of the appearance of the nth multiplihedron for various n in the studies of higher homotopy commutativity, (weak) n-categories, A ∞ -categories, deformation theory, and moduli spaces. We also include suggestions for the use of our realizations in some of these areas as well as in related studies, including enriched category theory and the graph-associahedra.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.