Abstract

The geometry of convex domains in Euclidean space plays a central role in several branches of mathematics: functional and harmonic analysis, the theory of PDE, linear programming and, increasingly, in the study of other algorithms in computer science. High-dimensional geometry, both the discrete and convex branches of it, has experienced a striking series of developments in the past 10 years. Several examples were presented at this meeting, for example the work of Rudelson et al. on conjunction matrices and their relation to confidential data analysis, that of Litvak et al. on remote sensing and a series of results by Nazarov and Ryabogin et al. on Mahler’s conjecture for the volume product of domains and their polars.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.