Abstract
Quite often a machine learning problem lends itself to be split in several well-defined subproblems, or tasks. The goal of Multi-Task Learning (MTL) is to leverage the joint learning of the problem from two different perspectives: on the one hand, a single, overall model, and on the other hand task-specific models. In this way, the found solution by MTL may be better than those of either the common or the task-specific models. Starting with the work of Evgeniou et al., support vector machines (SVMs) have lent themselves naturally to this approach. This paper proposes a convex formulation of MTL for the L1-, L2- and LS-SVM models that results in dual problems quite similar to the single-task ones, but with multi-task kernels; in turn, this makes possible to train the convex MTL models using standard solvers. As an alternative approach, the direct optimal combination of the already trained common and task-specific models can also be considered. In this paper, a procedure to compute the optimal combining parameter with respect to four different error functions is derived. As shown experimentally, the proposed convex MTL approach performs generally better than the alternative optimal convex combination, and both of them are better than the straight use of either common or task-specific models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.