Abstract
Convex envelopes of nonconvex functions are widely used to calculate lower bounds to solutions of nonlinear programming problems (NLP), particularly within the context of spatial Branch-and-Bound methods for global optimization. This paper proposes a nonlinear continuous and differentiable convex envelope for monomial terms of odd degree, x2k+1, where k ∈ N and the range of x includes zero. We prove that this envelope is the tightest possible. We also derive a linear relaxation from the proposed envelope, and compare both the nonlinear and linear formulations with relaxations obtained using other approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.