Abstract
In this paper necessary, and sufficient optimality conditions are established without Lipschitz continuity for convex composite continuous optimization model problems subject to inequality constraints. Necessary conditions for the special case of the optimization model involving max-min constraints, which frequently arise in many engineering applications, are also given. Optimality conditions in the presence of Lipschitz continuity are routinely obtained using chain rule formulas of the Clarke generalized Jacobian which is a bounded set of matrices. However, the lack of derivative of a continuous map in the absence of Lipschitz continuity is often replaced by a locally unbounded generalized Jacobian map for which the standard form of the chain rule formulas fails to hold. In this paper we overcome this situation by constructing approximate Jacobians for the convex composite function involved in the model problem using e-perturbations of the subdifferential of the convex function and the flexible generalized calculus of unbounded approximate Jacobians. Examples are discussed to illustrate the nature of the optimality conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.