Abstract
In this paper we deal with the open problem of convex combinations of continuous triangular norms stated by Alsina, Frank, and Schweizer [C. Alsina, M.J. Frank, B. Schweizer, Problems on associative functions, Aequationes Math. 66 (2003) 128–140, Problems 5 and 6]. They pose a question whether a non-trivial convex combination of triangular norms can ever be a triangular norm. The main result of this paper gives a negative answer to the question for any pair of continuous Archimedean triangular norms with different supports. With the help of this result we show that a non-trivial convex combination of nilpotent t-norms is never a t-norm. The main result also gives an alternative proof to the result presented by Ouyang and Fang [Y. Ouyang, J. Fang, Some observations about the convex combination of continuous triangular norms, Nonlinear Anal., 68 (11) (2008) 3382–3387, Theorem 3.1]. In proof of the main theorem we utilize the Reidmeister condition known from the web geometry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.