Abstract

Checking validity of a model is a crucial step in the process of system identification. This is especially true when dealing with switched affine systems since, in this case, the problem of system identification from noisy data is known to be generically NP-Hard and can only be solved in practice by using heuristics and relaxations. Therefore, before the identified models can be used for instance for controller design, they should be systematically validated against additional experimental data. In this paper we address the problem of model (in)validation for multi-input multi-output switched affine systems in output error form with unknown switches. As a first step, we prove that necessary and sufficient invalidation certificates can be obtained by solving a sequence of convex optimization problems. In principle, these problems involve increasingly large matrices. However, as we show in the paper by exploiting recent results from semialgebraic geometry, the proposed algorithm is guaranteed to stop after a finite number of steps that can be be explicitly computed from the a priori information. In addition, this algorithm exploits the sparse structure of the underlying optimization problem to substantially reduce the computational burden. The effectiveness of the proposed method is illustrated using both academic examples and a non-trivial problem arising in computer vision: activity monitoring.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.