Abstract

We derive a convex relaxation for cardinality constrained Principal Component Analysis (PCA) by using a simple representation of the L 1 unit ball and standard Lagrangian duality. The resulting convex dual bound is an unconstrained minimization of the sum of two nonsmooth convex functions. Applying a partial smoothing technique reduces the objective to the sum of a smooth and nonsmooth convex function for which an efficient first order algorithm can be applied. Numerical experiments demonstrate its potential.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.