Abstract

Pyrolysis combined with land application for dewatered municipal sludge disposal revealed advantages in heavy metals solidification and resource utilization compared with other disposal technologies. In this study, utilizing dewatered municipal sludge for calcium-containing porous adsorbent preparation via pyrolysis was proposed and verified. After pyrolyzing at 900 ° C (Ca-900), the dewatered sludge obtained maximum adsorption capacity (83.95 mg P⋅ g−1) and the adsorption process conformed to the pseudo-second-order model and double layer model. Characteristic analysis showed the predominant adsorption mechanism was precipitation. Continuous column bed experiment indicated 2 g adsorbent could remove 4.27 mg phosphorus from tail wastewater with the initial phosphorus concentration of 1.03 mg ⋅ L−1. No heavy metals leaching was observed from Ca-900 adsorbent with pH value exceeding 1.0, and merely 1% addition of Ca-900 adsorbent (after actual water phosphorus adsorption) with soil could extremely promote the early growth of seedlings. Economic estimates demonstrated that this cost-effective modification could generate the most add-on value production. Based on these results, the strategy of ‘one treatment but two uses’ was proposed in this study, converting the wastes to resource and providing a native strategy for sludge disposal and resource recovery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call