Abstract
With the aim to solve the serious problem of white plastic pollution, we report herein a low-cost process to quantitatively convert polyethylene terephthalate (PET) into p-xylene (PX) and ethylene glycol (EG) over modified Cu/SiO2 catalyst using methanol as both solvent and hydrogen donor. Kinetic and in-situ Fourier-transform infrared spectroscopy (FTIR) studies demonstrate that the degradation of PET into PX involves tandem PET methanolysis and dimethyl terephthalate (DMT) selective hydro-deoxygenation (HDO) steps with the in-situ produced H2 from methanol decomposition at 210 °C. The overall high activities are attributed to the high Cu+/Cu0 ratio derived from the dense and granular copper silicate precursor, as formed by the induction of proper NaCl addition during the hydrothermal synthesis. This hydrogen-free one-pot approach allows to directly produce gasoline fuels and antifreeze components from waste poly-ester plastic, providing a feasible solution to the plastic problem in islands.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.