Abstract

Efficiently converting unstable linkages into stable linkages is an important objective in the chemistry of covalent organic frameworks (COFs), because it enhances stability and preserves crystallinity. Here, an unstable imine-linked COF was converted into a stable aromatic benzoxazole-linked COF (BO-COF) via post-oxidative cyclization, based on chemistry used to form fused-aromatic ladder-like rigid-rod polymers. The structure of the porous BO-COF was confirmed by transmission electron microscopy, infrared and solid-state nuclear magnetic resonance spectroscopies, powder X-ray diffraction patterns, and nitrogen adsorption-desorption isotherms. The efficient post-treatment of an unstable reversible COF converted it into a stable irreversible COF, which had significantly improved thermal and chemical stabilities as well as high crystallinity. This strategy can be universally applied for the synthesis of stable fused-aromatic COFs, expanding their practical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.