Abstract

Nacre of Pinctada maxima is a natural biomineralized matrix, appeared 7 million years before hominins. In this study, we converted nacre into a self-setting particle bound with multiple calcium orthophosphates that reassemble mammals’ bone mineral matrices for induction of bone regeneration. The nacre-based calcium orthophosphates composite (NCOC) exhibited a compression strength of 10 MPa, which is superior to human trabecular bone. In vitro bioactivity tests revealed the formation of apatite with nano-porous flake-like crystals on the composite surface that mimic HA structure of a human bone matrix. NCOC demonstrated efficient attachment and proliferation of osteoblast cells, promoting osteogenic differentiation by increasing expressions of RUNX2 and OPN. In vivo studies using rabbit back fascia demonstrated that NCOC displays better bone healing and biocompatibility than conventional bone substitute apatite in critical bone defect models. The degradation of calcium carbonate crystal in vivo does not compromise structural integrity of NCOC. Overall, our data showed that NCOC produced through self-setting reactions, presents advantages such as accelerated biodegradation and osteostimulative properties, making it a promising bone substitute for effective bone regeneration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.