Abstract

Wounds are usually irregular in shapes, and accompanied with a series of disorders such as hemorrhage and bacteria contamination. Here, we report a multifunctional hydrogel prepared by phase-transited lysozyme (PTL), which presents antimicrobial, injectable, self-healing, tissue adhesive, hemostatic and biodegradable properties that fit the requirements of wound treatment. The lysozyme was unfolded under the action of tris(2-carboxyethyl)phosphine (TCEP), and then self-assembled into a hydrogel (PTLG). The phase transition expanded the antibacterial spectrum of lysozyme, PTLG effectively killed both Gram-positive bacteria (Staphylococcus aureus, Staphylococcus epidermidis) and Gram-negative bacteria (Escherichia coli, Acinetobacter baumannii) on contact. This dynamically cross-linked hydrogel exhibited injectable and self-healing abilities, and was capable of adapting to various wound morphologies. The tissue-adhesive nature derived from phase-transition, endowed PTLG with hemostatic effect. Meanwhile, PTLG exhibited biocompatibility towards mammalian cells. Furthermore, its anti-infective ability in vivo was verified in a mouse subcutaneous infection model, more than 98 % of S. epidermidis was reduced under PTLG injection. And PTLG could be biodegraded within four weeks in mice body. Overall, the proposed PTLG is a promising multifunctional dressing material that could accommodate the various demands of complex and deep wounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.