Abstract

Interpolation series (divided difference, Gregory-Newton, Gauss, Stirling, Bessel) are converted into Chebyshev (or Jacobi) series by applying a previously derived general five-term recurrence formula [3]. It employs the coefficients in three-term linear recurrence formulas (same kind as for orthogonal polynomials) which have been found for the mth degree nonorthogonal polynomial coefficients of the differences used in the interpolation series. In the Gauss, Stirling and Bessel series, the coefficients in the recurrence formulas vary with the parity of m. The basic five-term recurrence formula is applicable also to: (1) inter- and intraconversion of power series in a x + b ax + b , divided difference and equal-interval interpolation series (including subtabulation), and Chebyshev series, (2) obtaining Chebyshev series for solutions of difference equations, (3) the derivation of formulas for Chebyshev coefficients in terms of differences, and (4) the conversion of interpolation series into Chebyshev series, for more than one variable.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.