Abstract

The urgency to mitigate environmental impacts from anthropogenic CO2 emissions has propelled extensive research efforts on CO2 reduction. The current work reports a novel approach involving transforming CO2 and ethane into carbon nanotubes (CNTs) using earth-abundant metals (Fe, Co, Ni) at 750 °C. This route facilitates long-term carbon storage via generating high-value CNTs and produces valuable syngas with adjustable H2/CO ratios as byproducts. Without CO2, direct pyrolysis of ethane undergoes rapid deactivation. The participation of CO2 not only enhances the durability of the catalyst, but also contributes about 30 % of the CNTs production, presenting a viable solution to CO2 challenges. The CNT morphology depends on the catalyst used. Co- and Ni-based catalysts produce CNT with a 20 nm diameter and micrometer length, whereas Fe-based catalysts yield bamboo-like structures. This work represents a pioneering effort in utilizing CO2 and ethane for CNT production with potential environmental and economic benefits.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.