Abstract
A structural-functional integrated shape-stabilized composite phase change material (PCM) was synthesized by converting biowaste rice into ultralight (0.08 g/cm3) hierarchical porous carbon (CNR) to pack polyethylene glycol (PEG) PCM. The thermal property and corresponding mechanism were analyzed. The results show that the composite PCM exhibits excellent thermal storage efficiency (93.3 %), considerable solar photothermal conversion efficiency and superior thermal stability. The interfacial thermal resistance (ITR) of PEG/CNR is 73 % lower than graphene foam-based composite PCM thus a fast transient temperature response. Particularly, the package of PEG endowed composite PCM with elastic characteristic thereby an enhanced compressive strength. Furthermore, covering PEG/CNR results in a delay of approximately 1.3 times in reaching the peak temperature on the surface of electronic components, and a delay of 5 times in cooling time. This study presents solid guidelines for societal development that is sustainable and makes some recommendations for construction of composite PCMs combining multifunctional applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Composites Part A: Applied Science and Manufacturing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.