Abstract

Validation of finite element models using experimental data with unknown boundary conditions proves to be a significant obstacle. For this reason, the boundary conditions of an experiment are often limited to simple approximations such as free or mass loaded. This restriction means that vibration testing and modal analysis testing have typically required separate tests since vibration testing is often conducted on a shaker table with unknown boundary conditions. If modal parameters can be estimated while the test object is attached to a shaker table, it could eliminate the need for a separate modal test and result in a significant time and cost savings. This research focuses on a method to extract fixed base modal parameters for model validation from driven base experimental data. The feasibility of this method was studied on an Unholtz-Dickie T4000 shaker and slip table using a mock payload and compared with results from traditional modal analysis testing methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.