Abstract

The theory of belief networks offers a relatively new approach for dealing with uncertain information in knowledge-based (expert) systems. In contrast with the heuristic techniques for reasoning with uncertainty employed in many rule-based expert systems, the theory of belief networks is mathematically sound, based on techniques from probability theory. It therefore seems attractive to convert existing rule-based expert systems into belief networks. In this article we discuss the design of a belief network reformulation of the diagnostic rule-based expert system HEPAR. For the purpose of this experiment we have studied several typical pieces of medical knowledge represented in the HEPAR system. It turned out that, due to the differences in the type of knowledge represented and in the formalism used to represent uncertainty, much of the medical knowledge required for building the belief network concerned could not be extracted from HEPAR. As a consequence, significant additional knowledge acquisition was required. However, the objects and attributes defined in the HEPAR system, as well as the conditions in production rules mentioning these objects and attributes, were useful for guiding the selection of the statistical variables for building the belief network. The mapping of objects and attributes in HEPAR to statistical variables is discussed in detail.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.