Abstract

ABSTRACTGaussian beam depth migration overcomes the single‐wavefront limitation of most implementations of Kirchhoff migration and provides a cost‐effective alternative to full‐wavefield imaging methods such as reverse‐time migration. Common‐offset beam migration was originally derived to exploit symmetries available in marine towed‐streamer acquisition. However, sparse acquisition geometries, such as cross‐spread and ocean bottom, do not easily accommodate requirements for common‐offset, common‐azimuth (or common‐offset‐vector) migration. Seismic data interpolation or regularization can be used to mitigate this problem by forming well‐populated common‐offset‐vector volumes. This procedure is computationally intensive and can, in the case of converted‐wave imaging with sparse receivers, compromise the final image resolution. As an alternative, we introduce a common‐shot (or common‐receiver) beam migration implementation, which allows migration of datasets rich in azimuth, without any regularization pre‐processing required. Using analytic, synthetic, and field data examples, we demonstrate that converted‐wave imaging of ocean‐bottom‐node data benefits from this formulation, particularly in the shallow subsurface where regularization for common‐offset‐vector migration is both necessary and difficult.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.