Abstract

In this study we focused on the effects of light irradiation and the addition of L-galactono-1,4-lactone (L-GalL) on the conversion of exogenous L-GalL to L-ascorbate (AsA) and the total AsA pool size in detached leaves of Arabidopsis plants and transgenic plants expressing the rat L-gulono-1,4-lactone oxidase gene. Increases in the total AsA level in L-GalL-treated leaves depended entirely on light irradiation. Treatment with an inhibitor of photosynthetic electron transport together with L-GalL reduced the increase in total AsA under light. Light, particularly the redox state of photosynthetic electron transport, appeared to play an important role in the regulation of the conversion of L-GalL to AsA in the mitochondria, reflecting the cellular level of AsA in plants.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.