Abstract

Microporous biochars, mainly composed by hydroxyapatite (HAp), were prepared from animal waste bones. In this study, a three-step procedure including pre-pyrolysis, chemical treatment with NaOH, KOH and K2CO3, and pyrolysis was investigated. The effects of the activation agent and its concentration were analysed by N2 adsorption–desorption, SEM, EDX, FTIR, and XRD techniques. The activation mechanism was investigated by TG-MS. FTIR and XRD data confirm that the obtained biochars were mainly composed of HAp. K2CO3 was the most effective with porosity being increased by 30 % (up to 234 m2/g) compared to non-alkali-treated sample. New pores were generated mainly in the microporous range. Analysis of the pyrolysis gases by MS revealed that the main effect of the alkali treatment is the incorporation of OH− ions, which then react with bone matrix to generate porosity. Other gas-phase reactions, such as reverse WGS and methanation reactions, promoted by K2CO3, may be involved in the activation process. In contrast, KOH caused little modification of the HAp structure. Statistical analysis supported the relationship among the release of certain compounds during pyrolysis and the textural properties of the final material.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.