Abstract

A novel composite, biochar derived from spent coffee grounds with immobilized TiO2 (biochar–TiO2) was prepared, characterized, and applied as an alternative, effective, and sustainable photocatalyst for degrading diclofenac from aqueous solution. Composites with different mass ratios between TiO2 and biochar were prepared by mechanical mixing and subsequent pyrolysis in an inert atmosphere of N2 at 650°C. The sample with biochar–TiO2 ratio of 1:1 presented a degradation efficiency of 90% at just 120 min versus 40% for TiO2 used as reference. This fact is associated with a set of intrinsic characteristics obtained during the formation of the composite, such as superior pore size, avoiding the recombination of the ē/h+ pair, bandgap reduction, and promotion of reactive oxygen species due to phenolic groups present on the biochar surface. The dominant reactive species involved during the photocatalytic degradation of diclofenac were h+ and •OH. The diclofenac degradation pathways were determined based on the identification of intermediates and nonpurgeable organic carbon (NPOC) analysis. The novel biochar–TiO2 composite prepared in this work showed high physical–chemical stability and efficiency over five consecutive cycles of reuse, proving to be a highly promising photocatalyst for degrading diclofenac in water.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.