Abstract

The polycyclic aromatic hydrocarbons (PAH): naphthalene, anthracene, pentacene, perylene, and coronene were submitted to temperatures up to 1500 °C at 8 GPa. To avoid catalytic action of metals on thermal conversion, graphite was used as container material. Moreover, graphite is very permeable to the gaseous products of thermal decomposition of PAH. The resulting thermal transformations and their evolution were studied by X-ray diffraction, Raman spectroscopy and scanning electron microscopy as a function of temperature for 60-s treatments. The nature of the initial compounds clearly affects the products of the different stages of carbonization and the first steps of graphitization. This becomes hardly discernible in the final stages of graphitization above 1000 °C. Above 1200 °C, graphite with high crystallinity forms in all cases. The temperature of the beginning of diamond formation does not seem to be influenced by the nature of the initial PAH and is equal to ∼1280 °C for all investigated compounds. Diamonds formed from the PAH are high-quality 5–40 μm single crystals. The p, T values of diamond formation here obtained are significantly lower than those previously known for direct graphite–diamond transformation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call