Abstract
Orange peels are considered a waste, and the increase in cultivation and processing of oranges tends to increase waste in society. This work is designed to convert waste to wealth by investigating the potential of biodiesel production from orange peels and its suitability as an alternative fuel in compression ignition (CI) engines. Steam distillation pilot plant was used to extract oil from the orange peels, 1.27% was its maximum oil yield recovery. The oil was transesterified using methanol at a 6:1 molar ratio with 0.70% sodium hydroxide as the catalyst at 55 <sup>o</sup>C for 60 minutes and 96.00% biodiesel yield recovery was obtained. The biodiesel properties were found with density of 872 kg/m<sup>3</sup>, viscosity of 1.9 cSt, pH value of 7.6, calorific value of 38.4 MJ/kg, and flash point of 84 <sup>o</sup>C. The biodiesel was blended with diesel at different volumes, compared with pure diesel, and run on a CI engine. B20 (20.00% biodiesel, 80.00% diesel) has the optimum brake-specific fuel consumption rate and brake thermal efficiency and are respectively 9.08% lower and 11.99% higher than petroleum diesel. B15 (15.00% biodiesel, 85.00% diesel) has the optimum exhaust temperature and is 10.37% lower than diesel. B10 (10.00% biodiesel, 90.00% diesel) has the optimum carbon monoxide and carbon dioxide emissions and are 58.07% and 43.70% lower respectively than petroleum diesel.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: European Journal of Sustainable Development Research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.