Abstract
In the present study, photocatalytic reactions of nitrogen oxides (NO x = NO + NO 2) were studied on commercial TiO 2 doped facade paints in a flow tube photoreactor under simulated atmospheric conditions. Fast photocatalytic conversion of NO and NO 2 was observed only for the photocatalytic paints and not for non-catalytic reference paints. Nitrous acid (HONO) was formed in the dark on all paints studied, however, it efficiently decomposes under irradiation only on the photocatalytic samples. Thus, it is concluded that photocatalytic paint surfaces do not represent a daytime source of HONO, in contrast to other recent studies on pure TiO 2 surfaces. As main final product, the formation of adsorbed nitric acid/nitrate anion (HNO 3/NO 3 −) was observed with near to unity yield. In addition, traces of H 2O 2 were observed in the gas phase only in the presence of O 2. Formation of the greenhouse gas nitrous oxide (N 2O) could be excluded. The uptake kinetics of NO, NO 2 and HONO was very fast under atmospheric conditions (e.g. γ(NO + TiO 2) > 10 −5). Thus, the uptake on urban surfaces (painted houses, etc.) will be limited by transport. For a hypothetically painted street canyon, an average reduction of nitrogen oxide levels of ca. 5% is estimated. Since the harmful HNO 3/NO 3 − is formed on the surface of the photoactive paints, whereas it is formed in the gas phase in the atmosphere, the use of photocatalytic paints may also help to reduce acid deposition, e.g. on plants, or nitric acid related health issues.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.