Abstract
The conversion of multilayer graphenes into sp3-bonded carbon films on metal surfaces (through hydrogenation or fluorination of the outer surface of the top graphene layer) is indicated through first-principles computations. The main driving force for this conversion is the hybridization between sp3 orbitals and metal surface dz2 orbitals. The induced electronic gap states and spin moments in the carbon layers are confined in a region within 0.5 nm of the metal surface. Whether the conversion occurs depend on the fraction of hydrogenated (fluorinated) C atoms at the outer surface and on the number of stacked graphene layers. In the analysis of the Eliashberg spectral functions for the sp3 carbon films on a metal surface that is diamagnetic, the strong covalent metal-sp3 carbon bonds induce soft phonon modes that predominantly contribute to large electron-phonon couplings, suggesting the possibility of phonon-mediated superconductivity. Our computational results suggest a route to experimental realization of large-area ultrathin sp3-bonded carbon films on metal surfaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.