Abstract
Intercropping can increase soil nutrient availability and provide greater crop yields for intensive agroecosystems. Despite its multiple benefits, how intercropping influences rhizosphere microbiome assemblages, functionality, and complex soil nitrogen cycling is not fully understood. Here, a three-year field experiment was carried out on different cropping system with five fertilization treatments at the main soybean production regions. We found that soybean yields in intercropped systems were on average 17 % greater than in monocropping system, regardless of fertilization treatments. We also found that intercropping systems significant increased network modularity (by 46 %) and functional diversity (by 11 %) than monocropping systems. Metagenomics analyses further indicated intercropping promotes microbiome functional adaptation, particularly enriching core functions related to nitrogen metabolism. Cropping patterns had a stronger influence on the functional genes associated with soil nitrogen cycling (R2 = 0.499). Monocropping systems increased the abundance of functional genes related to organic nitrogen ammonification, nitrogen fixation, and denitrification, while functional guilds of nitrate assimilation (by 28 %), nitrification (by 31 %), and dissimilatory nitrate reduction (by 10.1 %) genes were enriched in intercropping systems. Furthermore, we found that abiotic factors (i.e. AP, pH, and Moisture) are important drivers in shaping soil microbial community assemblage and nitrogen cycling. The functional genes include hzsB, and nrfA, and nxrA that affected by these biotic and abiotic variables were strongly related to crop yield (R2 = 0.076 ~ R2 = 0.249), suggesting a key role for maintaining crop production. We demonstrated that land use conversion from maize monocropping to maize-soybean intercropping diversify rhizosphere microbiome and functionality signatures, and intercropping increased key gene abundance related to soil nitrogen cycling to maintain the advantage of crop yield. The results of this study significantly facilitate our understanding of the complex soil nitrogen cycling processes and lay the foundation for manipulating desired specific functional taxa for improved crop productivity under sustainable intensification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.