Abstract

Plastic wastes disposal can be done by various methods such as landfill, incineration, mechanical and chemical recycling but these are restricted due to some environmental, economic and political problems. Conversion of these plastic wastes into valuable products by degradation is the best option. In the present work waste low density polyethylene was degraded by catalytic process using CaO/SiO2 as mixed catalyst. The conditions for catalytic degradation were optimized for the production of maximum liquid fuel. It was found that the yield of liquid product was up to 69.10 wt% at optimum condition of temperature (350 °C), time (90 min) and catalyst feed ratio (1:0.4). Liquid fuels obtained from the catalytic degradation were further separated into various fractions by fractional distillation. Composition of liquid fuels was analyzed by FTIR spectroscopy, which showed that the liquid fuels mostly consist of paraffinic and naphthenic hydrocarbons. Different fuel properties such as density, specific gravity, American petroleum institute gravity (API gravity), viscosity, kinematic viscosity, refractive index, refractive intercept and flash point of both the parents and various fractional fuels were determined. All the properties of the obtained fuels are in close agreement with the fuel properties of gasoline, kerosene and diesel. It was found that our catalyst is very much efficient in terms of time, degradation temperature and amount of catalyst.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call