Abstract

Aerobic gammaproteobacterial methanotrophs (gMOB) are key organisms controlling methane fluxes at the oxic-anoxic interfaces of freshwater ecosystems. Under hypoxic environments, gMOB may shift their aerobic metabolism to fermentation, resulting in the production of extracellular organic acids. We recently isolated a gMOB strain representing the Methylobacter spp. of boreal lake water columns (i.e., Methylobacter sp. S3L5C) and demonstrated that it converts methane to organic acids (acetate, formate, malate, and propionate) under hypoxic conditions. Annotation for putative genes encoding organic acid production within the isolate's genome and in environmental metagenome-assembled genomes (MAGs) representing Methylobacter spp. suggests that the potential for methane conversion into organic acids is widely found among Methylobacter spp. of freshwater ecosystems. However, it is not known yet whether the capability to convert methane to organic acids is restricted to Methylobacter spp. or ubiquitously present among other freshwater gMOB genera. Therefore, we isolated representatives of two additional gMOB genera from the boreal lake water columns, i.e., Methylomonas paludis S2AM and Methylovulum psychrotolerans S1L, and demonstrated similar bioconversion capacities. These genera could convert methane to organic acids, including acetate, formate, succinate, and malate. Additionally, S2AM produced lactate. Furthermore, we detected genes encoding organic acid production within their genomes and in MAGs representing Methylomonas spp. and Methylovulum spp. of lake and pond ecosystems. Altogether, our results demonstrate that methane conversion to various organic acids is a widely found trait among lake and pond gMOB, highlighting their role as pivotal mediators of methane carbon into microbial food webs of freshwater lake and pond ecosystems. IMPORTANCE Aerobic gammaproteobacterial methanotrophic bacteria (gMOB) play an important role in reducing methane emissions from freshwater ecosystems. In hypoxic conditions prevalent near oxic-anoxic interfaces, gMOB potentially shift their metabolism to fermentation, resulting in the conversion of methane to extracellular organic acids, which would serve as substrates for non-methanotrophic microbes. We intended to assess the prevalence of fermentation traits among freshwater gMOB. Therefore, we isolated two strains representing relevant freshwater gMOB genera, i.e., Methylovulum and Methylomonas, from boreal lakes, experimentally showed that they convert methane to organic acids and demonstrated via metagenomics that the fermentation potential is widely dispersed among lake and pond representatives of these genera. Combined with our recent study showing coherent results from another relevant freshwater gMOB genus, i.e., Methylobacter, we conclude that the conversion of methane to organic acids is a widely found trait among freshwater gMOB, highlighting their role as pivotal mediators of methane carbon into microbial food webs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call