Abstract
Methane coupling to produce C2 hydrocarbons through a dielectric-barrier discharge (DBD) plasma reaction was studied in four DBD reactors. The effects of high voltage electrode position, different discharge gap, types of inner electrode, volume ratio of hydrogen to methane and air cooling method on the conversion of methane and distribution of products were investigated. Conversion of methane is obviously lower when a high voltage electrode acts as an outer electrode than when it acts as an inner electrode. The lifting of reaction temperature becomes slow due to cooling of outer electrode and the temperature can be controlled in the expected range of 60°C–150°C for ensuring better methane conversion and safe operation. The parameters of reactors have obvious effects on methane conversion, but it only slightly affects distribution of the products. The main products are ethylene, ethane and propane. The selectivity of C2 hydrocarbons can reach 74.50% when volume ratio of hydrogen to methane is 1.50.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.