Abstract

AbstractCellular polymers, such as polyethylene foams, are commonly used in the packaging industry. These materials have short service life and generate a high volume of waste after use. In order to valorize this waste and produce added‐value applications, it is proposed to convert these materials into highly efficient energy absorption structures. This was done by modifying the original cellular morphology of the foams (spheroidal or polygonal) into a re‐entrant structure to produce auxetic materials. This work presents an optimized process combining mechanical compression and solvent vapor evaporation‐condensation leading to low density foams (77–200 kg/m3) having negative Poisson's ratios (NPR). Three series of recycled low density polyethylene (LDPE) foams with an initial density of 16, 21, and 36 kg/m3 were used to optimize the processing conditions in terms of treatment temperature, time, and pressure. From all the samples prepared, a minimum Poisson's ratio of −3.5 was obtained. To further characterize the samples, the final foam structure was analyzed to relate with mechanical properties and compare with conventional foams having positive Poisson's ratios. The results are discussed using tensile properties and energy dissipation which were shown to be highly improved for auxetic foams. Overall, the resulting foams can be used in several applications such as sport and military protection equipment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.