Abstract

Chromatophores (Chr) from photosynthetic nonsulfur purple bacterium Rhodobacter sphaeroides immobilized onto a Millipore membrane filter (MF) and sandwiched between two semiconductor indium tin oxide (ITO) electrodes (termed ITO|Chr – MF|ITO) have been used to measure voltage (ΔV) induced by continuous illumination. The maximum ΔV was detected in the presence of ascorbate / N,N,N’N'-tetramethyl-p-phenylenediamine couple, coenzyme UQ0, disaccaride trehalose and antimycin A, an inhibitor of cytochrome bc1 complex. In doing so, the light-induced electron transfer in the reaction centers was the major source of photovoltages. The stability of the voltage signal upon prolonged irradiation (>1 h) may be due to the maintenance of a conformation that is optimal for the functioning of integral protein complexes and stabilization of lipid bilayer membranes in the presence of trehalose. Retaining ∼70 % of the original photovoltage performance on the 30th day of storage at 23 °C in the dark under air was achieved after re-injection of fresh buffer (∼40 μL) containing redox mediators into the ITO|Chr – MF|ITO system. The approach we use is easy and can be extended to other biological intact systems (cells, thylakoid membranes) capable of converting energy of light.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call