Abstract

The overall objective of the project is to demonstrate that a partial oxidation system, which utilizes a transport reactor, is a viable means of converting refinery wastes, byproducts, and other low value materials into valuable products. The primary product would be a high quality fuel gas, which could also be used as a source of hydrogen. The concept involves subjecting the hydrocarbon feed to pyrolysis and steam gasification in a circulating bed of solids. Carbon residue formed during pyrolysis, as well as metals in the feed, are captured by the circulating solids which are returned to the bottom of the transport reactor. Air or oxygen is introduced in this lower zone and sufficient carbon is burned, sub-stoichiometrically, to provide the necessary heat for the endothermic pyrolysis and gasification reactions. The hot solids and gases leaving this zone pass upward to contact the feed material and continue the gasification process. The Transport Reactor Test Unit (TRTU) was commissioned to conduct studies on pyrolysis of Rose Bottoms using spent FCC (Fluid Catalytic Cracker) catalyst as the circulating medium and gasification of this carbon over a temperature range of 1,600 to 1,700 F. The Rose Bottoms (Residuum Oil Supercritical Extraction) was produced inmore » the Rose unit. Studies were done in the Bench Scale Reactor Unit (BRU) to develop suitable catalyst formulations and to study the steam reforming of methane and propane in support of the experiments to be conducted in the TRTU. Studies were also conducted on gasification of coke breeze, petroleum cokes and carbon deposited on FCC catalyst. The catalytic effect of potassium on gasification of these solids was studied. Studies were conducted in the CFS (cold flow simulator) to investigate flow problems experienced in the TRTU. Results from these studies are presented in this report.« less

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.